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Abstract

One-dimensional, spherical models for streamer corona have been developed to in-
vestigate the effects of a lightning rod’s radius on the time of leader initiation. In
the development of the final model, a numerical solution for the currrent–voltage
relationship of stationary corona with spherically dependent charge density has
been found. An analytical, closed form solution of this problem is not known [e.g.,
Roth, 1995, p. 253–255], and the related solution represents one of the original
contributions of this thesis. The non-stationary corona model presented in this
thesis is an improvement on the recent work by Bazelyan et al. [2008, and ref-
erences within]. The non-stationary corona and upward leader model developed
in this thesis numerically calculates the development of corona in a 1–D spher-
ical system and accounts for streamer busts and upward leader initiation. The
non-stationary model has been validated through comparison with the stationary
solution, previous models [e.g., Aleksandrov et al., 2002, Bazelyan et al., 2008], and
field data [Moore et al., 2003]. The pulsing nature of the streamer bursts inhibits
the formation of a leader and has been used to find an upper limit on the optimum
lightning rod tip radius. Any optimum rod radii found should be less than 5 cm,
and will likely be between 0–2 cm. However, no lower limit for the optimum rod
radius can be set at this time. Further investigation into shielding effects may be
able to provide additional constraints for the optimum lightning rod radii.
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Chapter 1
Introduction

1.1 Importance of Corona

When Benjamin Franklin invented lightning rods, he believed that the sharp tips

on his metal rods would prevent lightning discharge to the ground by discharging

thunderclouds. However, he discovered that his sharp-tipped lightning rods had

the opposite effect. Instead of eliminating lightning from the sky, his rods attracted

lightning. Inspired by this discovery, lightning rods were used to direct lightning

safely to the ground and away from tall structures. Since its invention, the design

of the lightning rod has changed little [Uman, 2001, pp. 5–8 and references cited

therein].

Since Benjamin Franklin’s time, scientists have developed a better understand-

ing of the lightning process. The charge that accumulates in a thundercloud causes

an increase in the ambient electric field at the ground. This field can be greatly

increased (typically by about 1–2 kV/cm [Moore et al., 2003]) at the top of tall,

grounded, objects, e.g., the tip of a lightning rod, the roof of a building, or the

top of a tree, due to the sharp change in voltage between the object and the
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surrounding atmosphere. If cloud-to-ground lightning descends from the thunder-

cloud, the electric field will increase even more. The large electric field causes a

current to flow through these objects, accumulating charge that forms a so-called

corona around the top. From the corona, upward, needle-like ionizations channels,

first as non-thermal “streamers” and, subsequently, as thermalized “leaders”, can

develop. This process will be described in further detail below. Eventually, a

downward leader from cloud-to-ground lightning will meet an upward leader from

the ground, connecting the cloud-to-ground lightning to the ground [e.g. Bazelyan,

2007; Aleksandrov et al., 2005b; Bazelyan and Raizer , 2000, pp. 1–10].

In the specific case of a lightning rod, a corona forms during a slow rise of

voltage on the rod. The rise in voltage can be due to charge build up in the

thundercloud, previous lightning in the surrounding area, or a downward leader

descending from the thundercloud. When the electric field near the tip of the rod

reaches the critical electric field for ionization (≈ 43 kV/cm at ground pressure),

corona is initiated. At this critical electric field, an ionization layer forms at the

edge of the rod-tip, which injects a current into the surrounding air. The charge

density of the developing corona around the tip of the lightning rod is typically on

the order of 1015 m−3 [e.g., Becerra et al., 2007; Aleksandrov et al., 2005b; Bazelyan

and Raizer , 1998, pp. 72–75, and discussion therein].

After a corona has formed around the tip of a lightning rod due to a slow voltage

rise, a streamer can be initiated. A streamer is a string of progressively avalanching

charge that appears and disperses quickly. Streamers are characterized as having

a constant internal electric field of about 4.5 kV/cm. A streamer is initiated from

the tip of a lightning rod when the electric field near the tip becomes strong enough

to support ionization outside of the edge. The required electric field is defined by

the combination of the Townsend criteria (for initiation) and the Meek criteria (for
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development) [see Meek and Craggs , 1978, pp. 392–394; [Raizer , 1991, pp. 345–347;

Bazelyan and Raizer , 2000, pp. 32–58; Cooray , 2003, pp. 70–79].

The streamer–leader transition occurs when the temperature increase produced

by streamers becomes large enough to support thermal ionization. A leader is a

plasma channel with a higher level ionization than streamers that forms along the

length of an established streamer. It is characterized as conductive (with almost

no voltage drop along its length), quick-forming (10−5–10−6 s), and long-lasting

[Raizer , 1991, pp. 363–367]. When streamers form, they typically stem off of

the same point. As the voltage rises, the streamer corona and, subsequently, the

concentration of streamers around an initiation point (the tip of a leader or a light-

ning rod) grows. Thermal ionization occurs when the concentration of streamers is

strong enough to reach temperatures of∼5000 K. At this point, the strongly ionized

gas creates a thermal plasma channel that grows along the length of a streamer

channel [Raizer , 1991, p. 365; Bazelyan and Raizer , 2000, pp. 59–61]. Another

form of ionization occurs when the collective current of streamers is strong enough

to produce a temperature of about 2000 K. At this temperature, electron detach-

ment from O−
2 ions occurs in atmosphere. This detachment process forms a leader

[Raizer , 1991, pp. 363–367; Cooray , 2003, pp. 82–84]. Experiments have shown

that leader initiation occurs typically when streamers reach a length of about 1 m

[e.g., Raizer , 1991, p. 366; Becerra and Cooray , 2006a]. This can also be char-

acterized as a 400-kV voltage drop along the length of a 1-m long streamer [e.g.,

Aleksandrov et al., 2002; Aleksandrov et al., 2005b].

Paradoxically, the corona that develops around a lightning rod often serves

to prevent the initiation of upward streamers and leaders. Studies have shown

that, when a corona is present, a longer time is needed for streamer and leader

initiation [Becerra and Cooray , 2006b; Aleksandrov et al., 2005b; and Chapter 4
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of this thesis]. This shielding effect is due to the charge of the corona preventing

the electric field from growing to satisfy the Meek criterion for streamer initiation.

Also, the corona charge limits the length of streamers formed, which delays the

leader formation [Becerra and Cooray , 2006b]. For this reason, an appropriate

understanding of the corona around lightning rod tips is necessary.

With an appropriate understanding of lightning and corona, it is possible to

create a better lightning rod. It has been suggested that a blunt-tipped rod may

attract lightning more than Franklin’s sharp-tipped rod because of the different

electric fields and coronas that the tips produce [Moore et al., 2000b; Becerra and

Cooray , 2006b, and references cited therein]. Electromagnetic modes exist [see

Chapters 2 and 4] to quantify the electric field that surrounds a lightning rod, the

corona that develops around a lightning rod in thunderstorm conditions, and the

conditions of upward leader initiation from the tip of a lightning rod. By analyz-

ing the model equations, the striking distance of different types of lightning rods

can be determined. However, these equations are mostly empirical and practical

applications involve complex time-dependent variables, such as charge density de-

velopment and dynamic electric field, that are difficult or impossible to compute

analytically.

The optimum lightning rod tip configuration has been explored by recent stud-

ies involving the analysis of time-dependent electric fields and the development of

complex and time consuming numerical models (to be discussed in the following

section). Typical rod tip configurations in these studies involve sharp or blunt tips

with various radii, typically 1–125 mm. A debate has risen about how much more

protection an optimum lighting rod tip will offer. An optimum rod tip radius could

lead to better protection of structures from lighting. As it is now, no model exists

to adequately relate lightning rod tip-radii to strike-receptiveness.
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1.2 The Effects of Lightning Rod Tip Radius on

Strike-Receptiveness

1.2.1 Field Studies

Field studies about lightning rods are useful because they show practical results

of different lighting rod tip configurations on strike-receptiveness. Though mea-

surements from these studies are difficult to obtain, they show the most realistic

values. Only one major field study has been performed because of the large amount

of time needed to collect data.

For seven years, Moore et al. [2000a] studied the strike-receptiveness of sharp-

and blunt-tipped rods placed on the summit of South Baldy Peak in New Mex-

ico. In this competition between rods, Moore et al. [2000a] attempted to show

the effectiveness of different rod types. Blunt-tipped rods were constructed with

hemispherical tips ranging from 9.5 mm to 51 mm in diameter. On the summit,

traditional sharp-tipped Franklin rods were mounted with blunt-tipped rods placed

6 m away from each Franklin rod.

In their study, Moore et al. [2000a] found that blunt-tipped rods were more

likely to be struck by lightning. In seven years, they observed 12 lightning strikes

to the rods. The 19-mm diameter lightning rods were struck the most often,

while none of the sharp-tipped rods were ever struck. This data indicated a clear

advantage of the blunt-tipped rods over the sharp-tipped rods used in this study.

In addition, current measurements were taken from both a sharp- and blunt-

tipped rod for three specific nearby lightning strikes. The first and second lightning

strikes occurred in the observed area and caused large currents of over 8 A in the

blunt-tipped rod and relatively small currents (less than 2 A) in the sharp-tipped
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rod. For the third strike, which occurred 10 meters closer to the sharp-tipped rod

than the blunt-tipped rod, the sharp-tipped rod had the greater current of 3.7 A,

while the blunt-tipped rod had a current of about 3 A.

Moore et al. [2000a] conducted the first long-term, accurately documented, field

study about the strike-receptiveness of sharp- and blunt-tipped lightning rods.

From this study, it could be conclusively said that, when placed in direct competi-

tion, Moore et al. [2000a]’s blunt-tipped rods were better than their sharp-tipped

rods at attracting lightning. It remains to be explored, though, how these rods

perform when in practical use rather than on a clear summit with few other ground

obstructions [Bazelyan, private communication, 2007]. Also, the quantification of

a rod’s strike-receptiveness and the significance of differences between sharp- and

blunt-tipped lightning rods remained to be explored. Though the electric field

around rod tips was merely glanced over, it was clear from this study that calcula-

tions of electric field would prove useful in quantifying a rod’s strike-receptiveness.

Recognizing the need to further explore the effect of ambient electric field on

strike-receptiveness, Moore et al. [2000b] published a complementary article to

the experiment described above. Using the same competition between sharp- and

blunt-tipped rods as Moore et al. [2000a] for data, Moore et al. [2000b] analytically

calculated the electric field around similarly-shaped ellipsoids in order to further

explain why only blunt rods were struck in the competition.

The calculations of electric field quantified Moore et al.’s [2000a; 2000b] results

that their blunt-tipped rods were more strike-receptive than sharp-tipped rods.

Moore et al. [2000b] found that the electric field around sharp-tipped rods was

intensified by over twice as much at the surface of the tip. However, Moore et al.

[2000b] also observed that the electric field surrounding blunt-tipped rods dropped

less rapidly with distance than the electric field around sharp-tipped Franklin rods
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[Rison, private communication, 2007]. For a rod with a 10-mm radius, the blunt-

tipped electric field became greater at about 0.8 cm away from the tip. This

observation meant that blunt-tipped rods had greater electric fields at distances

more than a few centimeters away from the tip of the rod, which could make them

more receptive to lightning.

Moore et al. [2000b] related electric field to strike-receptiveness in order to

explain why only blunt-tipped rods were struck in their field study. An electric

field above a certain threshold value (about 4.3 kV/cm) allowed upward streamer

and leader initiation from the tip of the rod. Therefore, the blunt-tipped rod’s

larger electric field over a longer distance than the sharp-tipped rod allowed for

longer upward leaders. Longer upward leaders led to an increase in the protection

radius of the blunt-tipped rod.

In attempting to isolate the reason behind why no Franklin rods were struck

in the field study, Moore et al. [2000a] and Moore et al. [2000b] showed that the

electric field can be directly correlated to strike-receptiveness. However, using

ellipsoids to represent rods, produced estimation errors. By using a numerical

approach to solve for electric field, these errors can be reduced, as seen in Section

1.2.3.

1.2.2 Laboratory Experiments

Although field studies can provide the most accurate information on strike-recep-

tiveness, laboratory studies provide a way to obtain useful data while operating

in conditions close to those of practical interest. While field studies take years to

observe natural lightning strikes, laboratory studies can simulate lightning on com-

mand. However, the laboratory environment does not always accurately reproduce
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real situations and may lead to unreliable results.

Moore et al. [2003] built upon their previous results on competition between

sharp- and blunt-tipped rods [Moore et al., 2000a; Moore et al., 2000b] to analyze

strike-receptiveness. They explored the electric field surrounding lightning rods

in order to provide an explanation for the differences observed between strike-

receptiveness.

In the experiment, Moore et al. [2003] electrically simulated thunderstorm con-

ditions for a sharp- and a blunt-tipped lightning rod. They placed the lightning

rods in a strong electric field of about 100 kV/m. In the electric field, a sharp-

tipped rod produced a blue glow that extended from the tip to 5–7 mm away.

Meanwhile, a blunt-tipped rod (19-mm diameter) produced a more erratic glow up

to 70 mm away with streamers that extended to the generator electrode, located

40 cm away.

Moore et al. [2003] explained these glows as corona and developed a reason

for strike-receptiveness. The glow observed around the lightning rod was due to

avalanching electrons created by the enhanced electric fields at the tip of the rod.

Since the blunt-tipped rods had a larger electric field over a longer distance, the

glow for those rods extended over 60 mm farther than the glow for sharp-tipped rod.

This longer distance was enough for the blunt-tipped rods to create streamers that

extend past the corona to the generator electrode. However, the sharp-tipped rod

did not create a large enough corona to create streamers. Therefore, Moore et al.

[2003] concluded that blunt-tipped rods were better strike receptors than sharp-

tipped rods because a blunt-tipped rod allowed for the initiation of streamers at

lower ambient electric fields. However, the exact values of electric field were not

given. By investigating various rod tip radii, Moore et al. [2003] concluded that

the optimum diameter for a blunt-tipped rod was between 12.7 mm and 19 mm.
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This study provided an important link between electric field and strike-recep-

tiveness. Moore et al. [2003] demonstrated that the development of streamers is

due to the observed corona that, in turn, is due to the enhancement of the electric

field at the tip of a rod [Raizer , 1991, pp. 345–347]. In providing this link, the

protection of a lightning rod in an undisturbed electric field can be quantified by

how much a lightning rod enhances the electric field in the area near its tip. The

optimum diameter found with this approach was within the range of rods struck

by lightning in Moore et al. [2000a], indicating the validity of this approach.

Citing a lack of data in Moore et al. [2000a], D’Alessandro et al. [2003b]

performed a large-scale laboratory experiment to test the difference in strike-

receptiveness between sharp- and blunt-tipped rods. Using a laboratory set-up

to imitate Moore et al.’s [2000a] field study, they hoped to provide large amounts

of data on strike-receptiveness. They hoped that the quantity of data provided in

the laboratory experiment would allow statistically significant conclusions to be

drawn.

D’Alessandro et al. [2003b] used two different laboratory settings to put sharp-

and blunt-tipped rods in competition. First, they placed a sharp-tipped rod (radius

0.2 mm) and a blunt-tipped rod (radius 12.5 mm) 3 m apart with a plane generator

electrode 5 m overhead. Electric pulses were sent through the plane electrode and

the number of strikes to each rod was recorded. Next, this experiment was repeated

with a rod electrode placed 3 m overhead.

The results for this study were inconclusive in indicating strike-receptiveness.

For the first experiment, the sharp-tipped rod was slightly more receptive to strikes

than the blunt-tipped rod, receiving 45 and 39 hits of 60 pulses tested for two

different rod heights. However, when the distance between rods was increased to

6 m for the same experiment, the sharp-tipped rod received only 21 hits of 40 pulses.
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Also, for the second experiment, the rods performed equivalently. Out of 200

pulses, the sharp- and blunt-tipped rod received 69 and 63 hits, respectively. The

difference in hits to sharp- and blunt-tipped rods were so small that no conclusions

could be drawn.

Although Moore et al. [2000a; 2000b; 2003] showed that blunt-tipped rods had

an advantage over sharp-tipped rods, the D’Alessandro et al. [2003b] study was

important because it demonstrated that the advantage may not be as significant

as Moore et al. had indicated.

Ahmad and Ong [2005] performed a laboratory experiment to relate strike-

receptiveness and the ionization breakdown parameters of various lightning rods.

They measured the breakdown voltage and breakdown time (the time until ioniza-

tion occurs when placed under a consistent voltage) of lightning rods with stan-

dard, sharp, blunt, flat, conical, and concave tips. Standard tips are defined in this

article as a sharp tip with the point flattened. To test the relation between strike-

receptiveness and the measured breakdown parameters, Ahmad and Ong [2005]

placed standard-, blunt-, and sharp-tipped rods in competition with each other.

Ahmad and Ong [2005] believed that a rod with a low breakdown voltage and

a long breakdown time would be the most strike-receptive. With that hypothesis,

the breakdown parameters were measured for individual rods. The blunt-tipped

rod had the lowest breakdown voltage of ∼1450 kV. The breakdown voltages for

the standard- and sharp- tipped rods were only ∼20 kV higher. All other rods

had significantly higher breakdown voltages. The blunt-tipped rod also had the

longest breakdown time of ∼12 µs. However, all other rods had breakdown times

within 3 µs.

To test if having the lowest breakdown voltage and the longest breakdown time

would give the blunt-tipped rod an advantage, Ahmad and Ong [2005] tested this
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rod against the standard- and sharp-tipped rods. They placed two competing rods

(either blunt- and sharp-tipped or blunt- and standard-tipped) 2 m apart, and

a generator electrode 2 m overhead of the midway-point between the rods. The

generator electrode was charged repeatedly, and the number of electric strikes to

each rod was recorded. When placed in competition with the sharp-tipped rod,

the blunt-tipped rod received 70% of the strikes; when placed in competition with

the standard-tipped rod, the blunt-tipped rod received 60% of the strikes. These

results further develop the debate between sharp- and blunt-tipped rods.

1.2.3 Computer Models

With computer simulations of strikes to lightning rods, it is possible to analyze

strike-receptiveness with a large amount of data in a controlled environment. Com-

puter simulations use established equations in their approaches, though large errors

can still occur due to approximations and idealizations. Because they are restricted

to known equations, simulations may be over-simplified to accurately represent re-

ality. However, simulations are often used with laboratory parameters or settings.

We note that in the model studies reported in this thesis, a sphere with radius of

1 mm is used to represent a sharp-tipped rod.

In an effort to quantify strike-receptiveness, D’Alessandro [2003a] developed

a computer simulation to calculate the striking distance of lightning rods with

varying input parameters. In his numerical approach, D’Alessandro [2003a] placed

a blunt-tipped rod of specified height and radius on a rectangular or cylindrical

structure or on a flat surface. He introduced a downward leader into the simulation

and calculated the upward leader development from the lightning rod as function

of time. Using the time of upward leader initiation, striking distance was found as
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a function of the input parameters.

D’Alessandro [2003a] found that both rod tip radius and rod height affected

striking distance of a lightning rod. For rods less than 2 m high placed on a flat

surface, the rod tip radius caused little effect on striking distance. However, as rod

height increased to 8 m and above, the rod tip radius had an increasing non-linear

effect on striking distance. Similar measurements were taken for rods placed on

rectangular and cylindrical structures. From all simulations, the largest striking

distances occur for tip radii between 0.01 m and 0.1 m.

Improving on D’Alessandro [2003a], D’Alessandro [2007] calculated the opti-

mum lightning rod tip radius. Solving for ambient electric field, he calculated

the optimum rod radius using two criteria: the point of corona inception and the

strength of electric field above the ionization region. However, D’Alessandro [2007]

did not discuss how these values were used to determine the optimum radius.

The results from D’Alessandro [2007] corresponded to the experimental setting

of Moore et al. [2000a] and illustrated the dependency of a lightning rods strike-

receptiveness on its surroundings. When D’Alessandro [2007] simulated parameters

similar to Moore et al.’s experimental set-up, the optimum radius was 8–10 mm. In

Moore et al.’s study, lightning most often struck 19-mm-diameter (9.5-mm radius)

rods. D’Alessandro [2007] also showed that the optimum rod radius could be

proportionally dependent on the height of the rod. Other input parameters, such

as the structure on which the rod was placed and the placement of the rod on that

structure showed no definite effects on rod radius. Overall, the optimum rod tip

radius rarely exceeded 30 mm.

D’Alessandro’s [2007] studies are incomplete because the optimum rod tip ra-

dius was calculated with no indication of how much the rod tip radius affected a

lightning rod’s performance. Though the optimum rod radius would clearly have
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the largest protection radius, how much larger this protection radius is than that

of other rod radii remains unanswered. However, the validation of Moore et al.’s

[2000a] field study indicated that the effects of a blunt-tipped rod’s radius on

strike-receptiveness should not be completely ignored.

Adopting a simpler simulation domain, Aleksandrov et al. [2005a] simulated a

1–D spherical approximation of a lightning rod in thunderstorm conditions in order

to quantify a rod’s performance. This model was developed from previous work

on corona discharges [Aleksandrov et al., 2002]. The 1–D estimation of a lightning

rod as a sphere was justified by a less than 20% error and yielded a simple model.

Aleksandrov et al. [2005a] numerically calculated the dynamic corona due to the

enhancement of electric field.

The dynamic corona calculations revealed little dependence of a lightning rod’s

protection distance on tip radius. From the dynamic corona, Aleksandrov et al.

[2005a] determined the height of a descending downward leader that would initiate

upward streamers and form leaders from the tip of a lightning rod. They observed

that, though the initiation of streamers depends slightly on rod radius, the height

of initiation of a connecting leader has negligible dependence. For a rod tip radius

less than 1 cm, the upward leader was initiated around 460 m. For all simulated

rod tip radii, the upward leader was initiated between 300–475 m. A range of

175 m was small compared to the size of thunderstorms (on the magnitude of

kilometers). From these results, Aleksandrov et al. [2005a] concluded that rod tip

radius had little effect on striking distance. In addition, Aleksandrov et al. [2005b]

and Aleksandrov et al. [2006] used the same simulation to explore how corona

affected the strike-receptiveness of a lightning rod, concluding that the discharge

process was “almost independent of the hemisphere radius.”

Bazelyan et al. [2008] reviews the work of Aleksandrov et al. [2002], Aleksan-
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drov et al. [2005b], and Aleksandrov et al. [2006] on non-stationary corona models.

Bazelyan et al. [2008] discusses a 1–D non-stationary corona and upward leader

formation model. In the model, simplifications render the calculations nearly in-

dependent of radius. The effect of radius on leader formation is not considered

pertinent because leader formation is approximated to be independent of radius.

1.3 Problem Statement

This thesis investigates the corona development between spherical electrodes to

draw conclusions about the most effective lightning rod tip radius. By simulating

streamer and leader initiation from non-stationary corona, the relationship between

inner electrode radius and leader initiation is established. This model is used to

discuss the strike-receptiveness of sharp and blunt-tipped lightning rods.

The one-dimensional spherical simulation that was developed by Aleksandrov

et al. [2005a] and further used and explained by Aleksandrov et al. [2005b], Aleksan-

drov et al. [2006], and Bazelyan et al. [2008] is inaccurate. Although the simulation

that they present is correct in its derivation, it is missing several key points that

should be addressed. The simulation must be taken one step further and include

the development of streamer corona and the leader initiation in order to adequately

assess the strike-receptiveness of lightning rod tips.

The model in this thesis uses a one-dimmensional spherical geometry to rep-

resent a lightning rod, similar to that discussed by Bazelyan et al. [2008]. To

explain the physical development of this spherical approach, a simple diagram of

a lightning rod is shown in Figure 1.1(a). Here, the lightning rod is in a uniform

electric field. The voltage difference between the tip of the grounded rod and the

surrounding air is indicated as ∆U = E0h. This abrupt change in voltage is due
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to the fact that the voltage on the grounded rod is 0 V, and the voltage of the

atmosphere is defined through the uniform ambient electric field as U(z) = −E0z

(where z indicates height). Another diagram, Figure 1.1(b), models this same rod

as a sphere with a voltage of U = E0h. The ground plane can be eliminated

with minimal error when one is considering only the space above the lightning

rod [cf. Aleksandrov et al., 2005a], leaving a sphere in free space (as shown in

Figure 1.1(c)).

Finally, an outer spherical electrode must be added in order to limit the scope of

the simulation domain. Figure 1.1(d) shows the physical diagram of the simulation

domain. The rod radius (as defined by the inner electrode radius, R1) is variable,

while the outer electrode radius, R2, is meant to be kept consistently far away

(unless otherwise specified). In the limit as R2 approaches infinity, the model

becomes a sphere in free space (Figure 1.1(c)). The voltage on the rod is the same

as the applied voltage between the inner and outer electrodes, U . The applied

voltage will be defined separately for each simulation. The spherical symmetry

of this one-dimentional (1–D) model allows it to be dependent only on spherical

radius, r. As specified on Figure 1.1(d), ∆r represents the distance between grid

points in r, which are introduced for a numerical solution of the problem.

The model simulates the development of corona around the inner radius.

Corona develops around a conductor when the electric field near the surface of

the conductor becomes greater than the critical electric field for corona initiation.

According to Bazelyan et al. [2007] and Bazelyan et al. [2008] this can be estimated

empirically as

Ec = 27.8

(
1 +

0.54√
100R1

)
, (1.1)

where Ec and R1 are in units of V/m and m, respectively. This corona develops
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(d) One-dimmensional model.

Figure 1.1. Progression of the physical model from an axisymmetric lightning rod to
one-dimensional spherical electrodes. See text for details.

because the electric field in the ionization region cannot exceed the critical value,

Ec, but the applied voltage must be compensated. The ionization region is viewed

as a narrow region on the surface of the conductor with the ability to feed a

current of positive ions into the system [Aleksandrov et al., 2002]. In the physical
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model dipicted by Figure 1.1(d), the electric field reaches this critical value, Ec,

when the applied voltage between the electrodes exceeds Uc (such that E(R1)=Ec

without corona considered). In the given situation, the inner electrode acts as

a grounded conductor because it represents a grounded lightning rod. A time-

dependent corona will develop around the inner electrode, eventually expanding

to fill the entire simulation domain [e.g., Roth, 1995, pp. 251–256].

The stationary (or steady-state) and non-stationary (or time-dependent) corona

development between the spherical electrodes is simulated in this thesis. In the

stationary case, well-established electromagnetic equations are employed and a

numerical solution is obtained and validated. The stationary case is used as a basis

for the development of non-stationary corona model and as a means of validation

of this model.

The non-stationary corona model can be used to track the streamer and leader

development from the inner electrode. Using established initiation criteria for

streamers and leaders, the time and length of streamer corona and the moment

of time of leader initiation can be found through the model. These results can be

related to the radius of the inner electrode and used to draw conclusions regarding

optimum lightning rod tip radius.

1.4 Organization of this Thesis

Chapter 1 provides an introduction to lightning and corona effects as well as a

review of the literature on studies that have been done to investigate the effect of

lightning rod tips on strike-receptiveness. Section 1.3 provides a basis for the one-

dimentional spherical model of corona. Chapter 2 introduces stationary corona,

develops a related simulation model, and validates the approach. In Chapter 3,
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non-stationary corona are introduced and a related simulation model is developed.

Streamer and leader initiation criteria are added and a relationship is established

between the time of leader initiation and the inner electrode radius. Chaper 4

discusses the results of the non-stationary simulations. The non-stationary corona

and lightning model are validated and discussed. Finally, Chapter 5 drawa conclu-

sions from both stationary and non-stationary models and suggest future research.



Chapter 2
One-Dimmensional Spherical Models

of Stationary Corona

In order to develop a time-dependent simulation, the stationary approach must

first be considered. In this approach, Figure 1.1(d) was used as the physical basis.

In this Chapter, U(t) = U0, a constant value with respect to time.

2.1 Development of the Models

The stationary solution was found for two different approximations. First, the

ion density (or corona), n, between the spheres was taken to be a constant value

with respect to r, (i.e., n = const). Then, the solution was improved for an ion

density dependent on r (i.e., n = n(r)). The adapted method of corona analysis

was based on the approaches by Roth [1995, pp. 256–260] and Aleksandrov et al.

[2002]. Similar stationary corona analysis was also discussed in, e.g., Bazelyan

et al. [2007] and Becerra et al. [2007]. The analysis from Roth [1995, pp. 256–260]

has been adapted to spherical coordinates and expanded to involve a numerical
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solution for the variable ion density approach.

2.1.1 Model Using a Constant Ion Density

In this first approach, the ion density is kept independent of radius as well as time,

n = const. In other words, between the electrodes: dn/dt = 0 and dn/dr = 0.

When there is no corona (n = 0), the electric field and voltage equations for

all space can be found easily. This solution corresponds to a situation when the

voltage applied to the spheres is below the critical voltage required for corona

initiation, Uc. In this case,

E(R1) < Ec (2.1)

and

U0 < Uc, (2.2)

where Ec is defined in Equation (1.1).

Solutions for the voltage and electric field with respect to distance, r, can be

found using Poisson’s equation, ∇2U = 0. Boundary conditions were taken such

that U(R1) = U0 and U(R2) = 0, so that

U(r) =
U0R1R2

(R2 −R1)

1

r
− U0R1

(R2 −R1)
. (2.3)

From here, electric field can be found as

E(r) = −dU
dr

=
U0R1R2

R2 −R1

1

r2
. (2.4)

The critical voltage, Uc will be defined at the point where E(R1) = Ec. With
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electric field and voltage defined, Uc is determined as

Uc =
R1

R2

Ec(R2 −R1). (2.5)

This value can be used to determine what voltage must be applied to the electrodes

in order to initiate corona into the system. We note that it is independent of ion

density assumptions. We note also that, in a limiting case where R2 >> R1,

Uc = R1Ec.

Once the voltage on the sphere is increased beyond the critical voltage for

corona initiation, i.e., U0 > Uc, the problem changes as a corona develops and

n 6= 0. Therefore, n must be taken into account when calculating U(r) and E(r).

In this case, the analysis will be determined by ion density assumptions. Due

to breakdown considerations, the electric field at the surface of the inner sphere

remains at a constant value, Ec, despite any further increase in potential [Aleksan-

drov et al., 2002]. The iteration procedure, explained below, to obtain a solution

under the constant ion density assumption closely follows steps explained in Raizer

[1991, pp. 345–352]].

To begin, the current is defined using current density,

~J = ρ~v, (2.6)

the velocity of ions,

~v = µiE, (2.7)

and the definition of current,

I =
x

~J · d~S = 4πr2J. (2.8)
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By combining the these equations, the current is defined for the spherical domain

as

I(r) = 4πr2qenµiE. (2.9)

Using Equation (2.4)—keeping in mind that this electric field definition applies to

a situation with no corona—and Equation (2.9), the density (as a constant value,

independent of r) can be defined as

n =
I(R2 −R1)

4πqeµiR1R2U0

. (2.10)

The solution (2.4) for electric field remains approximately valid if the ion den-

sity is negligibly small. In order to find a more accurate solution for the electric

field (i.e., to find the next iteration), Gauss’s Law is written as

~∇ · ~E =
ρ

ε0

(2.11)

can be applied for spherical coordinates, such that

1

r2

∂

∂r
r2E(r) =

ρ

ε0

=
qen

ε0

. (2.12)

From Equation (2.12), both sides can be multiplied by r2 and integrated so that

r2E(r) =

∫
r2 qen

ε0

dr. (2.13)

Integration results in

r2E(r) =
qen

ε0

r3

3
+ C. (2.14)

The integration constant, C, in Equation (2.14) is defined such that Equation (2.4)
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is consistent at R1 when U(R1) = U0 = Uc. (This definition is because electric

field is always equal to Ec as defined by Equation (1.1) on the inner electrode’s

surface, E(R1) = Ec.) That is, at the point of corona inception, the electric field

defined by Equations (2.4) and (2.14) will be equivalent. Therefore, C is defined

such that

E(r) =
qen

3ε0

r3 −R3
1

r2
+

R1R2Uc

r2(R2 −R1)
. (2.15)

From Equation (2.15), Poisson’s Equation can be used to find voltage on the inner

electrode from the electric field as

U =

∫ R2

R1

E(r) dr, (2.16)

U =

∫ R2

R1

qen

3ε0

r3 −R3
1

r2
+

R1R2Uc

r2(R2 −R1)
dr. (2.17)

Solving Equation (2.17), yeilds

U =
qen

3ε0

(
R2

2 −R2
1

2

)
− qen

3ε0

R3
1

(
R2 −R1

R1R2

)
+ Uc. (2.18)

Using Equation (2.10) to substitute for n in terms of current, the potential can be

found as a function of current. Solving for current as a function of potential, the

current–voltage characteristic of the system can be defined as

I =
24πε0µiR1R

2
2

(R1 −R2)2 (R2
2 +R1R2 − 2R2

1)
U(U − Uc). (2.19)

In the limit as R2 approaches infinity, meaning that the inner electrode exists
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in free space (see Figure 1.1(c)), this solution approches

I = 24πε0µi
R1

R2
2

U(U − Uc). (2.20)

Equivalently, Aleksandrov et al. [2002] states Equation (2.19) as:

I = B U(U − Uc), (2.21)

where B is stated only as a proportionality constant. With the above deriva-

tion, B = 24πε0µi
R1

R2
2

for the geometry being considered. Moore et al. [2000a,

and references therein] state a mathematically equivalent current–voltage formula

determined through experimental observations, also with undefined constants for

B and Uc. Alternatively, Equation (2.19) clearly shows the dependence of this

current–voltage relationship on the geometry of the system and ion mobility.

The analytical solution given by Equations (2.10) and (2.19) for a constant

density, stationary corona between two spherical electrodes provides the ion density

and current–voltage characteristics of the system.

2.1.2 Model Using a Variable Charge Density

Modifying the problem of the previous section, it is possible to find a more accurate

solution for the stationary corona when the ion density is a function of radius,

n = n(r). In other words, we now consider the case when dn/dt = 0 and dn/dr 6=

0. Again, Figure 1.1(d) is used for these conditions. In this way, the electric

field and voltage before corona initiation are defined by Equations (2.3) and (2.4),

respectively. Likewise, Ec and Uc remain the same and are related by Equation2.5.

Also, the definition of current is given by Equation (2.9).
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Corona is initiated when E > Ec. To consider a variable ion density, the

continuity equation can be considered. In this problem the continuity equation is

simple due to the stationary, or steady-state condition

∂ρ

∂t
+ ~∇ · ~J = ~∇ · ~J = 0. (2.22)

The current density for this problem can be defined as a function of electric field,

~J = ρ~v = nqeµiE. (2.23)

Having combined Equations (2.22) and (2.23), a relation for n(r) can be found

1

r2

∂

∂r

[
r2nqeµiE(r)

]
= 0. (2.24)

Since the derivative must evaluate to 0, it is clear that a constant can be defined

as

C = r2 nqeµiE(r)︸ ︷︷ ︸
J

. (2.25)

The integration constant, C, can be further defined through the definition of cur-

rent density

C = r2J = r2

(
I

4πr2

)
=

I

4π
. (2.26)

Finally, the ion density can be solved as a function of r from Equation (2.25)

n(r) =
I

4πqeµiE(r)r2
. (2.27)

Using the established relations, the electric field can be derived as a function

of I and r. Beginning with Gauss’s Law for one-dimentional spherical coordinates,
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and substituting Equation (2.27),

1

r2

∂

∂r
r2E(r) =

nqe
ε0

=
I

4πε0µiE(r)r2
. (2.28)

Integrating both sides gives

∫
r2E(r) d(r2E(r)) =

∫
I

4πε0µi

r2 dr, (2.29)

which can be simplified to

(r2E(r))2

2
=

I

4πε0µi

r3

3
+ C, (2.30)

and solved for E(r)2, such that

E(r)2 =
I

6πε0µi

1

r
+

2C

r4
. (2.31)

The constant, C, in Equation (2.31) can be found by considering that electric field

at R1 is defined to be equivalent to the critical electric field, Ec,

E(R1) = Ec =
UcR2

R1(R2 −R1)
. (2.32)

Combining Equations (2.32) and (2.31) and solving for C yeilds

C =
1

2
E2

c R
4
1 −

R3
1 I

12πε0µi

. (2.33)

Finally, by substituting Equation (2.33) into Equation (2.31), a solution for E(r)
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can be found,

E(r) =
1

r2

√
E2

c R
4
1 +

(r3 −R3
1) I

6πε0µi

. (2.34)

Though a voltage–current characteristic cannot be found analytically, the volt-

age is still defined as the integral of electric field,

U(r) =

∫ R2

r

E(r) dr, (2.35)

where U(R2) = 0. Specifically, the voltage on the inner electrode can be defined

as

U(R1) = U0 =

∫ R2

R1

E(r) dr. (2.36)

Using Equations (2.34) and (2.36), an analytical, closed form solution cannot

be found. For this reason, the related solutions are not provided in the existing

literature [e.g., Roth, 1995, p. 260; Aleksandrov et al., 2002]. However, it is possible

to find the current–voltage characteristics of this system numerically. Keeping in

mind that the electric field is dependent on position, r, and current, the electric

field and potential can be solved for a set of specific currents injected into the

system. The related solution represents one of the original contributions of this

thesis.

2.2 Results

Using the stationary corona equations from the previous section, an analytical

solution for n = const and a numerical solution for n = n(r) were found. In order

to obtain a numerical solution for stationary corona for the case when n = n(r), a

range of currents must be specified. The electric field, potential, and ion density
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Figure 2.1. Current–voltage characteristics of stationary corona for R1 = 0.01 m and
R2 = 0.5 m. A linear relationship between I/V and V is obtained, as expected [Raizer ,
1991, pp. 348–349].

must be calculated for each individual current. In order to numerically solve for

potential via Equation (2.36), the dimension of the simulation domain must be

discretized into a series of points that are ∆r apart. The value of ∆r is important

for the integration of the electric field to find potential—a smaller ∆r provides a

more accurate solution.

For Figures 2.1–2.4, the parameters of the physical model (Figure 1.1(d)) were

set as: R1 = 0.01 m, R2 = 0.5 m, and ∆r = 0.001 m. With these parameters,

Ec = 43 kV/cm and Uc = 42.14 kV ≈ 42 kV.

The current–voltage characteristics for both constant and variable ion density

solutions are shown in Figure 2.1. The approaches are convergent around smaller

voltages. The point where I = 0 A occurs when U = Uc, the limit of corona

initiation. For any voltages lower than Uc, the electric field at R1 is less than

Ec. In these instances, there will be no initiated corona and, therefore, no current.

That is: I = 0 A, for U < Uc. From the current/voltage vs. voltage plot, it appears

that I/V ∝ V for both solutions.
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Figure 2.2. (a) Electric field vs. position for various current values. E(R1) = Ec =
43 kV/cm for all displayed curves. (b) Ion density vs. position for various current values.
R1 = 0.01 m and R2 = 5 m.
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Figure 2.3. (a) Electric field vs. position for various current values. E(R1) = Ec =
43 kV/cm for all displayed curves. (b) Ion density vs. position for various current
values. Note that r(m) and n are on a log scale to emphasize magnitudes of the values.
R1 = 0.01 m and R2 = 0.5 m.

For the variable density model, the electric field and ion density as a function

of radius were plotted for various currents in Figure 2.2. The electric field and ion

density near the inner electrode are largely dependent on current. This dependence

rapidly decreases with increasing distance away from the inner electrode.
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Figure 2.3 shows the same data with radius on a logarithmic scale to emphasize

the area close to the inner electrode. With ion density also plotted logarithmically,

it is clear that ion density has a near-exponential dependence on radius. The

logarithmic scale also makes observations about electric field possible near the inner

electrode. For all currents, the electric field is kept at constant at R1, following

the boundary condition that E(R1) = Ec. The electric field then decays rapidly

from this point for low currents. However, for relatively high currents, the electric

field increases before its decay. In Section 3.2, this observation about electric field

will become an important point in non-stationary corona when discussing streamer

initiation.

Figure 2.4 shows yet another way to look at electric field and ion density.

These color scale images of one-dimensional data emphasize the concentration of

electric field and ion density around the inner radius for one particular current,

I = 10 mA. They reflect the explanation of corona by Roth [1995, pp. 253–255],

and are characteristic of typical corona explanations. The ion density, particularly,

is concentrated around the inner electrode and decays to relatively low density at

the outer electrode. This is characteristic of a corona being concentrated around

the sharp point in the system. Though it appears as if the ion density decays to

zero at the outer radius, in actuality n(R2) ≈ 1014 m−3, as seen in Figure 2.3(b). In

the stationary, steady-state, condition presented in Figure 2.3(b), the corona has

pervaded the entire simulation domain. When considering non-stationary corona,

an ion front will be visible before the solution settles. In this case, the ion density

will be zero when downstream of the front of the corona. The corona front will

advance due to the advancement of ions in the electric field, and will eventually

reach the outer electrode. At this point, a steady-state solution will be established

is illustrated in Figure 2.3(b).
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Figure 2.4. Color scale images of the unidimensional non-stationary corona electric
field and ion density at I = 10 mA for R1 = 0.01 m and R2 = 0.5 m. All points graphed
which lie beyond R2 = 0.5 m are taken as having a value of 0.

We note that solutions for constant and variable ion density shown in Fig-

ure 2.1 are in significant disagreement due to the obvious limitations of a constant
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density assumption in a large gap. Intuitively, it could have been expected that

the solutions for constant and variable ion density, stationary corona would con-

verge for small gap geometries when R2 ≈ R1. However, actual solutions for the

small gap geometry discussed in this section reveal that, in practically significant

cases of not very close R1 and R2, agreement is only achieved for small values of

current. A simple explanation for this observation is provided by the analysis of

Equations (2.27) and (2.34) in the limiting case R2 ≈ R1.

According to Equations (2.27) and (2.34), the condition of near-constant ion

density occurs only with relatively low currents. As estimated from Equation (2.34),

these currents must be . 14 mA, for R1 = 1 cm and R2 = 1.1 cm). This value

comes from the requirements that the first term under the square root in Equa-

tion (2.34) should dominate the second one, such that

E2
cR

4
1 >

(R3
2 −R3

1) I

6πε0µi

. (2.37)
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Figure 2.5. Ion density distributions for various currents. Comparable constant densi-
ties shown in dashed lines. Parameters of the model were R1 = 1 cm and R2 = 1.1 cm.
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Under these conditions, Equation (2.34) can be simplified to

E(r) ≈ EcR
2
1

r2
. (2.38)

Substituting Equation (2.38) into Equation (2.27) for variable ion density, the ion

density can be simplified as

n(r) ≈ I

4πqeµiEcR2
1

≈ const. (2.39)

At higher currents, the constant and variable ion density solutions will not con-

verge. With the assumption of a large current, E(r), as defined by Equation (2.34),

can be approximated as

E(r) ≈ 1

r2

√
(r3 −R3

1) I

6πε0µi

. (2.40)

This analysis yields an ion density from Equation (2.27) of

n(r) ≈ I

4πqeµi

(
r3 −R3

1

6πε0µi

)−1/2

6= const. (2.41)

In this case, ion density remains spatially dependent. Figure 2.5 illustrates that,

in the spatially dependent ion density model, the ion density is nearly constant at

low currents and significantly dependent on r at high currents.

The above analytical explanation is further supported by Figures 2.7 and 2.6,

which illustrate the corresponding numerical solutions for a case when R2 ≈ R1.

We note that the solutions will not converge for large currents. This point is

shown in Figure 2.7, where the constant and variable ion density solutions diverge

for currents greater than ∼14 mA for the R2−R1 = 0.1 cm gap considered. As also

discussed above, the solutions will converge for small currents. Figure 2.6 illustrates
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Figure 2.6. Current–voltage characteristics of stationary corona for R1 = 1 cm and
R2 = 1.1 cm to show the convergence of the constant and variable ion density solutions
at small currents.
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Figure 2.7. Current–voltage characteristics of stationary corona for R1 = 1 cm and
R2 = 1.1 cm to show the divergence of the constant and variable ion density solutions
at large currents.

this convergence for currents less than ∼ 14 mA. In this case, the solutions are in

reasonable agreement, with a difference typically less than 1 mA. The discussed

limiting case represents one of the ways to validate the numerical voltage–current

characteristic for the variable ion density model.

A general condition for the validity of the constant density model obtained from

Equation (2.37), assuming ∆R = R2 − R1 << R1 and, therefore, representing R3
2
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in the form

R3
2 = R3

1

(
1 +

∆R

R1

)3

≈ R3
1

(
1 +

3∆R

R1

)
. (2.42)

Having substituted the above expansion in Equation (2.37), we obtain an expres-

sion allowing direct evaluation of ∆R and I combinations for which the constant

density assumption remains valid,

∆RI < 2πε0µiE
2
cR

2
1. (2.43)



Chapter 3
Non-Stationary Corona and Upward

Leader Model Formulation

Having established a stationary approach, the spherical model can now be devel-

oped for a non-stationary solution that can be used to simulate the initial condi-

tions for the development of leaders from lightning rods of different radii. In the

non-stationary solution, a transient ion density is defined as n = n(r, t). Using a

numerical approach, a non-stationary model is formulated, which can be further

expanded to include in consideration streamer and leader processes (see Section

3.2).

3.1 Corona

As with the solution for a corona with stationary, radially dependent ion den-

sity, the exact solution for non-stationary corona cannot be found analytically. A

derivation of the current–voltage relationship was not attempted. However, a so-

lution for non-stationary corona was found using the electromagnetic equations to
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follow with a numerical implementation. The simulation is discrete in both time,

∆t, and space, ∆r. The derivation that follows is based on the approaches and

models discussed in, e.g., Aleksandrov et al. [2002]; Aleksandrov et al. [2005b]; and

Bazelyan et al. [2008].

3.1.1 Finite-Difference Time-Domain Equations for Non-

Stationary Corona Modeling

Similarly to stationary corona, when the electric field on the inner radius is less

than the critical electric field for corona initiation, E(R1) < Ec, there is no ion

density, n = 0 m−3. In this case, electric field and voltage are still defined by

Equations (2.4) and (2.3). When the voltage on the inner electrode exceeds the

critical voltage as defined by Equation (2.5), corona is initiated. For non-stationary

corona E(R1, t) = Ec and n = n(r, t).

In order to implement a numerical solution for non-stationary corona, equations

for electric field and ion density must be established for discrete time and space.

For electric field, Gauss’s Law,

{
~E · d~S =

1

ε0

y
ρ dV, (3.1)

was converted to a discrete domain, such that

E(r + ∆r, t) = E(r, t)
r2

(r + ∆r)2
+
qen(r + ∆r, t)

ε0

(r + ∆r
2

)2

(r + ∆r)2
∆r. (3.2)

In a similar way, the continuity equation,

∂ni

∂t
+∇ · (µini

~E) = 0, (3.3)
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was converted for use in discrete coordinates for ion density.

qen(r, t+ ∆t) = qen(r, t)− 1

V ∗ [F (r, t)− F (r −∆r, t)] , (3.4)

where V ∗ and flux, F , are defined as

V ∗(r) =
4π(r + ∆r

2
)2∆r

∆t
, (3.5)

F (r, t) = 4πr2n(r, t)µE(r, t)qe. (3.6)

Flux, having units of amperes, is useful because it defines the current that flows

through any given point in the system. Flux can be used to define current as it

was defined in the stationary case. That is, the current into the system, I(t), can

be defined as

I(t) = F (R1, t). (3.7)

3.1.2 Numerical Approach

In order to deal with the dynamics of the non-stationary system, there must be

a limit on ∆t so that the numerical discretization scheme remains stable between

time-steps. The particles in the system must not be permitted to pass between two

discrete points in the time between steps [Potter , 1973, pp. 72–76]. That is, the

distance that the ions travel during one time step must be less than the discrete

length of space, or

µiEmax∆t ≤ ∆r. (3.8)
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Thus, the limit on the discrete steps in time is

∆t ≤ ∆r

µiEmax

. (3.9)

This is a modification of the Courant–Friedrichs–Lewy Condition [Potter , 1973,

p. 72]. Since Equation (3.9) is dependent on the maximum electric field and the

electric field varies with time, ∆t must be calculated separately for each advancing

step in time.

To implement this model, the simulation was driven by the voltage applied

to the system, U(t), defined such that dU/dt ≥ 0. Corona is initiated when

E(R1, t) > Ec in a corona-free system. The time of corona initiation, tc, is defined

when E(R1, tc) = Ec, where E(r, t) is defined by Equation (2.4). In free space

(when n(r, tc) = 0 for all r) then U(tc) = Uc, where Uc is defined in Equation (2.3).

At the time of corona initiation the electric field is known over the entire do-

main. Since

E(R1, tc) = Ec, (3.10)

E(r > R1, tc) can be calculated using Equation (3.2) at radius grid points, begin-

ning at r = R1 + ∆r. Also, at the time of corona initiation, the ion density and

flux are partially known. At the time right before tc, the flux and ion density are

zero at all grid points. At tc, the ion density and flux could have changed only at

the first grid point (i.e., directly on the sphere at R1), therefore

n(r > R1, tc) = 0, (3.11)

F (r > R1, tc) = 0. (3.12)
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For the next step in time, t = tc + ∆t, the current into the system must be

determined to account for the increasing potential and to maintain the electric

field on the surface of the inner electrode at a constant value of Ec. (The electric

field at the inner electrode is always indirectly accounted for in the condition

that E(R1, t) = Ec to find the necessary current.) To find this current, the ion

density at the inner radius for the past time, n(R1, tc), can be determined using a

bisection method in order to satisfy the condition (mathematically equivalent to

Equation (2.36)) that

U(t) =

∫ R2

R1

E(r, t) dr. (3.13)

The bisection algorithm begins with a high (nH), low(nL), and middle (defined

as: (nL + nH)/2) guess for n(R1, tc). For each guess, n(r > R1, tc + ∆t) can be

found and used to calculate E(r > R1, tc + ∆t). The error in calculating U(t) (the

boundary condition on the inner electrode) from the low, high, and middle guess

by using Equation (3.13) is determined. If the error of the middle guess is below

zero, then the middle guess becomes the new low guess. Likewise, if the error of

the middle guess is greater than zero, then the middle guess becomes the new high

guess. The process repeats until the error of the middle guess comes within the

chosen error tolerance, ε (typically ε = 10−3%). The readers are referred to Press

et al. [1992, pp. 117–119]] for details on the bisection search algorithm.

After the bisection process is complete, E(r, tc + ∆t), n(r > R1, tc + ∆t), and

F (r > R1, tc +∆t) have been determined. The time of the system can be increased

by ∆t (calculated by Equation (3.9)). The voltage applied to the system at that

time can be found through U(t), which is defined uniquely for the simulation.

For the current time and voltage, if U(t) > Uc, then the bisection process can be

repeated for the next point in time in order to find the current being injected into
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the system I(t).

If, however, corona is no longer being initiated for this time and voltage (i.e.,

U(t) < Uc), I(t) = 0 A, and the ion density already in the system drifts as defined

by flux. In this case, the potential at the grid points between the electrodes will be

found using the Thomas algorithm with the known ion density and the boundary

conditions that the potential at inner electrode is U(t) and the potential at the

outer electrode is 0 V [Suli and Mayers , 2003, pp. 93–98, and references therein].

Having found the potential at all grid points, the electric field can be found by the

inverse of Equation (3.13),

E(r) = −∂V (r, t)

∂r
. (3.14)

This drift process repeats until U(t) > Uc, where corona is initiated and the com-

putational cycle discussed above is repeated.

This process can be repeated indefinitely or until a defined condition through

discrete steps in time, limited only by computational resources.

With a model of non-stationary corona, the development of streamers and lead-

ers from the inner electrode can be traced. As explained in Section 1.1, an upward

leader discharge is generated in two steps. First, the corona reaches a condition to

ignite streamers (i.e., streamer corona). Second, the streamer channels merge and

the resulting current becomes sufficient to form a thermalized leader channel. The

following section explains the specific criteria for both of these processes.

3.2 Streamer Zone and Leader Initiation

By initiated upward streamers and leaders, a lightning rod will attract downward

leaders propagating downward from a thundercloud above. In this way, a lightning
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rod protects the surrounding area and structures from being hit by lightning. A

measure of a lightning rod’s strike-receptiveness can be found in the time that it

takes for an upward leader to be initiated, tL.

When a corona develops, there is an extremely thin ionization layer that forms

on the tip of the electrode. This layer is assumed to provide infinite charge into

the system while the corona matures. A streamer is formed when the ionization

layer moves away from the surface of the electrode. When this happens, electrical

breakdown occurs and streamers form [e.g., Aleksandrov et al., 2002; Cooray , 2003,

pp. 70–76]. The quantification of the movement of the ionization layer can be found

through the Meek condition, which states that streamers form when

∫ d

0

α(E) dx > 18 ∼ 20. (3.15)

The distance, d, is the point where α[E(d)] ≈ 0 and α is defined as

α(E) =
νi(E)− νa(E)

|µe|
, (3.16)

where νi is the ionization frequency, νa is the two-body dissociative attachment

frequency, and µe is the electron mobility in air.

As an alternative approach, Aleksandrov et al. [2005a] noted that a simple anal-

ysis of the electric field could also determine if the ionization layer has developed

beyond the surface of the inner electrode. If the electric field at any point beyond

the tip is higher than the critical electric field that is maintained at the tip, Ec,

then the condition is satisfied. In other words, streamers will form when

∂E

∂r

∣∣∣∣
r=R1

> 0. (3.17)
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Figure 3.1. A generic illustration of the formation of a streamer corona showing (a)
electric field and (b) voltage before and after the formation of streamers. The streamer
corona region here has a length of 0.1 m.

It should be noted that this condition has not been tested or mathematically

proven. However, the results of Section 4.2 indicate that this condition is nearly

equivalent to the Meek condition given by Equation (3.15).

When the Meek condition is satisfied, a streamer corona forms. The electric

field is taken to be 4.5 kV/cm along the length of the resultant streamer zone

[Raizer , 1991, p. 355], and the ion density within the streamer corona is assumed

to be determined by this electric field. The length of the streamer zone is restricted

by the voltage boundary conditions of U(t) and 0 V at the inner and outer elec-

trodes, respectively. Illustrative plots of the electric field and voltage in the system

during the transition from corona to streamer corona can be seen in Figure 3.1. In

the model presented here, when a streamer corona forms, the length of the streamer

zone is increased until the electric field throughout the domain satisfies the voltage

present at the inner electrode. This analysis of the length of the streamer zone

differs from previous models of streamers [Aleksandrov et al., 2005a], where the

length of the streamer zone was determined by the “spatial distribution” of the
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Figure 3.2. The generic formation of a streamer in regards to voltage, indicating the
differences between the method used here and an alternative method [Aleksandrov et al.,
2005a]. The streamer here has a length of 0.1 m by the first method and a length of
0.2 m by the alternative method. (Simulation domain is 5 m).

voltage. This alternative model is illustrated in Figure 3.2. From this graph, it can

be seen that the alternative model provides a sharp discontinuity in the derivative

of voltage, which would cause an unrealistic electric field. This unrealistic electric

field would not be equivalent to the electric field shown in Figure 3.1 and would

be unable to satisfy the boundary conditions placed by the voltages at the elec-

trodes and the ion density distribution required to maintain 4.5 kV/cm field in the

streamer zone.

Once a streamer corona has been formed in this system, it is not sustained and

the related deposited ion density begins to dissipate immediately. From this step, a

rising voltage will cause a corona to form again when E(R1) rises to the value of Ec

at the inner electrode surface. The corona and streamer process will repeat. If the

voltage applied to the system has been consistently rising, the streamer length will

increase with each new pulse of streamers and an assumption of quasi-continuous
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propagation of the streamer zone may be justified.

Directly after streamers have been initiated, it is possible for the streamer

zone to form into a leader. A large concentration of streamers at the inner elec-

trode will cause heating in the area. When the temperature in atmosphere reaches

≈ 1500− 2000 K, electron detachment occurs from O−
2 ions in the plasma sur-

rounding the tip [Cooray , 2003, p. 83]. This electron detachment is large enough

that a leader forms in the system along the length of the streamer zone [Raizer ,

1991, pp. 365–366].

Experiments at ground pressure have shown that leaders form when the length

of the streamer corona is ≈ 1 m [Raizer , 1991, p. 366]. Due to the consistent

electric field of ≈ 4.5 kV/cm along a streamer zone, this parameter can also be

specified as an approximate 400-kV voltage drop along the length of the streamer

zone [Aleksandrov et al., 2005a]. In our model, we assume that a leader will follow

this condition and be formed when

∆Ust > 400 kV, (3.18)

where ∆Ust is the change in voltage from the inner electrode to the outer edge of

a streamer zone which has formed. The time of leader initiation, tL is recorded at

the point in time when Equation (3.18) is satisfied along a newly formed streamer

zone.



Chapter 4
Non-Stationary Model Application

In this chapter, the model that was formulated in Chapter 3 is used to demon-

strate non-stationary corona and lightning leader initiation for the one-dimensional

spherical system.

4.1 Non-Stationary Corona Validation

To verify the non-stationary corona model, it was run using the same conditions

as in Aleksandrov et al. [2002; 2005b]. Under these conditions, U(t) was defined

as

U(t) =


Umax

τ
t if t < τ,

Umax if t ≥ τ.

(4.1)

For this instance, the corona will reach a steady-state solution. In the model,

R1 = 1 cm, R2 = 5 m, and Umax = 300 kV. The value of τ was varied as indicated.

In the general model, ∆r = R1/10 = 1 mm and ε = 10−3% (variations will be

noted).

A comparison of results from our model to the those presented by Aleksandrov
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et al. [2005b] is shown in Figure 4.1 and clearly indicates the excellent agreement

between the two models. For τ = 10−3 s, the current peaks at 3.4 mA and for

τ = 10−3 s, the current peaks at a significantly lower value of 0.87 mA. The

steady-state current solutions for both τ is about Iss = 0.068 mA.

The differences between results presented in Figures 4.1(a) and 4.1(b) are likely

due to the discretization of the system in time and space. The parameters ∆r and

∆t greatly affect the accuracy of the numerical solution. A slight change in ∆r can

drastically change the value found for Uc (by Equation (2.5)) and, consequently,

the current in the system. The ∆t parameter does not have a pronounced effect

on the system unless it violates the criterion of Equation (3.9). Also, the error

associated with the bisection process, ε, will affect the accuracy of the solution.

Because of this, ε is kept at low values (10−3%). The values of the parameters

discussed above (or, equivalent error values associated with the model) used by

Aleksandrov et al. [2002] are unknown.

The non-stationary solution can also be verified through comparison of the

steady-state regime and the stationary solution found in Section 2.1.2. Figure 4.2

shows the development of the non-stationary solution through time. For compar-

ison with results from Section 2.2, here R1 = 1 cm, R2 = 50 cm, and τ = 10−2 s.

From these figures, it is clear that the peak current occurs when t = τ and the

voltage has reached Umax = 300 kV. From this point in time, the current quickly

settles into the steady-state solution, Iss = 1.50 mA, which is in excellent agree-

ment with current I ≈ 1.5 mA at V = 300 kV for the stationary corona results

shown in Figure 2.1.

The solutions in Figure 4.1(a) and Figure 4.2 also show the effect of outer

electrode radius on the steady-state solution. For R2 = 5 m, Iss = 0.07 mA (from

Figure 4.1(a), and for R2 = 50 cm, Iss = 1.5 mA (from Figure 4.2). That is, a
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Figure 4.1. The current development of non-stationary corona for R1 = 1 cm and
R2 = 5 m for (a) the non-stationary model developed in this thesis and (b) a model
developed by Aleksandrov et al. [2005b].
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Figure 4.2. Applied voltage and current vs. time for numerically calculated non-
stationary corona. The model parameters are: R1 = 1 cm, R2 = 50 cm, ∆r = 1 mm,
and τ = 10−2 s.

factor-of-10 decrease in R2 leads to a factor-of-20 increase in steady-state current,

Iss. Considering that, in the simulation of lightning rods with results shown in

Section 4.2, the outer electrode is meant to be placed far enough away so that the

solution appears as if R2 = ∞, this places a restriction on how much R2 can be
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Figure 4.3. The steady-state solutions for E(r, t) and n(r, t) taken at t = 0.04 s for
model parameters R1 = 1 cm, R2 = 50 cm, ∆r = 1 mm, and τ = 10−2 s.

decreased and still keep the model accurate. Because of this clear restriction, R2

will be taken at 5 m for Section 4.2. This radius will be large enough to deal with

the dynamic voltage presented there without reaching steady-state.

In addition, the steady-state solutions for the electric field and ion density can

be seen in Figure 4.3. These are comparable to the stationary solutions seen in
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Figure 2.2. Ion density is concentrated around the inner electrode and decays

by nearly two orders of magnitude toward the outer electrode. The electric field

follows the same trend. An exact match in the stationary analysis is not seen

because, in this instance, the steady-state current (Iss = 1.50 mA) is too small

for the range of the stationary graphs shown in Figure 2.2. However, by know-

ing the steady-state current, an appropriate stationary solution can be found for

comparison. With a steady-state current of Iss = 1.5 mA, the appropriate ion den-

sity curve can be compared to the steady-state ion density. Figure 4.4 shows this

comparison between stationary and non-stationary steady-state for ion density.

The steady-state curve is the same data as in Figure 4.3(b), and the stationary

curve is calculated using the variable density stationary model of Chapter 2 for

I = 1.50 mA. In comparing the graphs, there is less than 4% error, defined as

|nnon-stationary − nstationary|
nnon-stationary

< 4%. (4.2)
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The correlation of these curves indicates that the steady-state solution is correct.

4.2 Initiation of Upward Leader

With the non-stationary corona model validated, upward leaders can be simulated

in the system using the criteria for streamer and leader initiation described in

Section 3.2.

At this point in discussing the model, it will be beneficial to think in terms of

physical mechanisms. With that in mind, the inner electrode will now be referred

to as the tip of a lightning rod, with the inner electrode radius representing the

rod radius. The voltage applied to the tip of the rod occurs because of the effects

of the charge growth in a thundercloud or the effects of an approaching downward

leader.

For the first upward leader simulation, the voltage applied to the system is

defined for all time as

U(t) =
U0

τ
t. (4.3)

The voltage plateau used in Equation (4.1) has been eliminated because the dy-

namic leader and streamer initiations will only occur when the voltage is transient

and rising: dU/dt > 0. When the only goal is to initiate streamers and leaders, the

plateau at Umax unnecessarily complicates the situation. In a natural occurance,

the rise time, τ , would be due to an approaching downward leader. With this in

mind, τ should be kept in the millisecond range, as indicated by previous experi-

ments [Moore et al., 2000a; Moore et al., 2003]. For comparison’s sake, U0 is kept

at 300 kV [Bazelyan et al., 2008].

Using these input parameters, a movie was created from a time-dependent
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Figure 4.5. The physical parameters of the model at t = 23.45 µs, just before the first
streamer initiation, for the model case with R1 = 5 cm, R2 = 5 m, and τ = 10−4 s.
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Figure 4.6. The physical parameters of the model at t = 23.45 µs, just after the first
streamer initiation, for the model case with R1 = 5 cm, R2 = 5 m, and τ = 10−4 s.
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simulation to explore the non-stationary effects of the corona and the streamer

and leader initiations (see Section A.1). The simulation was run using the Meek

condition for streamer initiation, R1 = 5 mm, R2 = 5 m, and τ = 100 µs. The

rise time used in this example is too short for practical application, but efficiently

demonstrates the performance of the model.

Figures 4.5 to 4.8 document several representative instants of time during model

execution. On the left side, the figures display the electric field, potential, and

ion density between the lightning rod and the end of the simulation domain for a

certain, indicated time. The plotted quantities are shown vs. log10(r) to emphasize

variations near the inner electrode. On the right side, the figures show the time

development of ∂E/∂r at R1 (see Equation (3.17) and related discussion), the

voltage applied to the rod, the Meek condition (as defined by Equation (3.15)),

and the current from the rod into the system.

The model begins with the development of corona around the tip of the rod.

Figure 4.5 shows the parameters of the simulation at t = 23 µs, just before the

first streamer corona is initiated. At this point, the voltage is relatively low,

U(t) ≈ 70 kV. Although corona has been initiated, there is negligible current in

the system. At this point, the good correlation of the Meek condition and ∂E/∂r

at the rod, R1, can be seen. The Meek condition is satisfied at this point in time,

while the later condition was satisfied at 21.51 µs, corresponding to only an 8%

difference between the two times. Therefore, either condition could be used for

streamer corona initiation and Equation (3.17) is validated.

The first streamer corona initiation in the simulation is shown in Figure 4.6. At

this point, the electric field is reduced to 4.5 kV/cm to satisfy the streamer corona

condition. The streamer zone length is determined by the boundary conditions

imposed by the voltage. In this case, the length of the streamer zone is 8 cm and
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it has a voltage drop along its length of 34.4 kV. The streamer zone distributes an

ion density in the system on the order of 1015 m−3 along its length. The current

that this distribution causes (though barely visible in the figure) is 0.7 A.

Figure 4.7 shows the point in time midway between the first and second streamer

corona initiation. At this point, the voltage applied to the rod has risen to ∼91 kV

and the electric field at the rod has reached the critical voltage for corona initia-

tion, Ec = 43 kV/cm. The ion density being injected into the system can be seen

merging with the ion density that was distributed by the first streamer corona.

A leader is initiated at the end of the simulation, and this point is shown in

Figure 4.8. This occurs at t = 244 µs, with an applied voltage of 732 kV. The

streamer corona that has formed has a length of 90 cm and injects a current of

16 A into the system. The voltage along its length is ∆Ust ≈ 400 kV. In this case,

∆Ust satisfies the condition for leader initiation specified in Equation (3.18) and a

leader will be formed in the system at this point. The simulation run is stopped

when criterion for leader initiation is satisfied.

This final figure of the simulation shows how the bursts of streamer corona form

as the voltage rises. Each sharp peek in current corresponds to a new streamer

corona initiation. Each streamer zone formed is slightly longer than the previous

one, as seen through the larger current injected into the system. In addition, the

voltage drop along the streamer zone grows with each streamer corona burst. This

increase in current, length and ∆Ust is due to the rising applied voltage on the rod,

U(t): a larger applied voltage is able to support a longer streamer zone. When the

streamer reaches nearly 1 m (0.8 m) (as seen in Figure 4.8, ∆Ust has increased to

be greater than 400 kV and a leader is initiated.

The pulsing effect on the current through a lightning rod qualitatiively matches

observations by Moore et al. [2000a; 2000b; 2003]. In these studies, when lightning
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Figure 4.7. The physical parameters of the model at t = 30.29 µs, midway between
first and second streamer initiations, for the model case with R1 = 5 cm, R2 = 5 m, and
τ = 10−4 s.
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Figure 4.8. The physical parameters of the model at t = 244.2 µs, showing the streamer
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τ = 10−4 s.



59

2 4 6 8 10
0

50

100

150

Rod Radius (cm)

  
  
  

  
  

  
  
t 

  
(µ
s

)
s
t

Figure 4.9. Time of first streamer corona initiation, tst, vs. rod radius, R1, for a
constantly rising voltage. Model parameters are: R2 = 5 m, and τ = 10−4 s.

strikes a lightning rod (or the surrounding area), a current is seen through the

rod, which grows as the downward leader approaches. The currents reported are

comparable to the 16-A current seen in the leader initiation shown in Figure 4.8.

Specifically, Moore et al. [2000b] reports field study data for strikes near lightning

rods that show an increasing, pulsing current that ranges from 0 to 8 A (the

equipment saturated at 8 A).

Having established that the model, as described by Figures 4.5 to 4.8, is accu-

rate, the model was run for a range of rod radii and rise times. Figures 4.9 to 4.12

show the results for these simulations.

The time of initiation for the first streamer corona, tst, vs. rod radius is shown

in Figure 4.9 for a voltage rise time of τ = 100 µs. Again, as discussed previously,

this small rise time is being used for demonstration purposes, as the effects of

streamer and leader initiation are more pronounced over a larger range of radii for

faster rise times. Here, it is evident that larger radii have longer time for streamer

corona inititation: for R1 = 1 mm, tst = 5.5 µs; for R1 = 10 cm, tst = 153 µs.
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Since a smaller radius has a lower critical voltage for corona ignition, Uc (as defined

by Equations (1.1) and (2.5)) and a sharper peak in electric field at the tip of the

rod, it is clear that the Meek condition, which depends on the electric field near

the tip, would be satisfied in a shorter amount of time for smaller rod radii.

Alternatively, leader initiation does not show this consistent trend between rod

radii and time of initiation. Shown in Figure 4.10, the time of leader initiation,

tL, oscillates with the change in rod radii, remaining consistently in the area of

tL ≈ 250 µs.

In order to understand the oscillation in Figure 4.10, the dynamics between

times of streamer corona and time of leader initiation were explored. Superimpos-

ing Figure 4.9 onto Figure 4.10 and adding the time of initiation for the second

through ninth streamer coronas, a clear relationship can be seen in Figure 4.11.

Here, it is clear that the oscillation occurs because a leader can only be initiated

immediately after a streamer has been formed. For example, with a rod radius

of 4 cm, the first streamer burst is formed at 80 µs, the second at 140 µs, and

the third at 200 µs. All of these streamer bursts have ∆Ust less than 400 kV, so

a leader does not form. The fourth streamer burst, initiated at 270 µs, forms a

leader because ∆Ust is greater than 400 kV. By comparison, a rod with a radius

of 8 cm initiates 2 streamer bursts with ∆Ust < 400 kV. The third streamer burst,

at t = 340 µs, has ∆Ust = 585 kV and initiates a leader.

With this example in mind, it is clear that the applied voltage, U(t), becomes

large enough to support a leader at 250 µs. However, there is a small delay in

leader initiation because a streamer must be formed after this time. At this time

(250 µs), the voltage applied to the inner electrode (750 kV) is strong enough to

support a streamer zone with a 400-kV voltage drop along its length as described

in Section 3.2. From Figure 4.11, it can be extrapolated that at extremely large
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radii (around 20 cm), the first streamer initiated will also cause leader initiation.

This means that large radii will suffer a delay in tL because of the prolonged time

that it takes for the first streamer to form.

The effect of rod radii on leader initiation for a constantly rising voltage, U(t),

is established for a range of rise times in Figure 4.12. The data from Figure 4.10

is shown as the smallest rise time on the graph. The relative importance of the

oscillations seen for a rise time of 100 µs is small for a given rod radius. Due to the

dynamics of the system, the minimum tL rises linearly with respect to increasing

rise time. This happens because a larger rise time will mean that it takes longer

for the applied voltage to reach the point where it can support the voltage drop

on a streamer zone necessary for leader formation.

In addition to the overall increase in tL, it can be seen that, as the voltage

rise time becomes longer, the rod radius has a larger affect on the time of leader

initiation. To illustrate this point, Figure 4.13 shows the time of leader initiation,
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Figure 4.12. A color scale image of the leader initiation time, tL, as a a function of
voltage rise time, τ , and rod radius, R1. In the model, R2 = 5 m.
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tL, for many different voltage rise times, τ . For a rise time of 0.1 ms (the same

plot as in Figure 4.10), there is little variation in tL and the leader is initiated by

the second streamer corona for a rod radius of 10 cm. For this rise time, the rod

radius has little effect on the time of leader initiation. A comparatively longer rise

time of 5 ms gives an order-of-magnitude variation in tL for the range of rod radii

shown in Figure 4.13. This rise time also initiates a leader at the time of the first

streamer corona for rod radii greater than 5 mm. At this rise time, a rod radius

greater than ∼ 1 cm would be undesirable as it would have a longer time for leader

initiation than rod radii less than 1 cm.

The same argument can be applied to any rise time. Generally, a rod radii

that initiates a leader at the time of the first streamer corona is undesirable, as it

will have a comparatively longer time of leader initiation, tL, than rod radii that

initiate streamers at the time of later streamer coronas.



Chapter 5
Conclusions

5.1 Scientific Contributions

A numerical model of spatially dependent ion density, stationary corona has been

developed. As shown in Figures 2.1 and 2.7, this numerical model provides the

current–voltage characteristic solution for a stationary corona. This solution is also

validated in the limit as R1 approaches R2 for small currents, as seen in Figure 2.6,

where the variable ion density solution approaches the simplified analytical solution

for constant ion density. An analytical, closed form solution of spatially dependent,

stationary corona is not known and for this reason the related solutions are not

provided in the existing literature [e.g., Roth, 1995, pp. 256–260; Aleksandrov

et al., 2002; Becerra et al., 2007; and others]. In using a numerical approach, the

stationary corona current–voltage characteristic can be understood and quantified.

The related solution represents one of the original contributions of this thesis.

A numerical solution for non-stationary corona has also been obtained. Though

similar numerical solution has already been established [Aleksandrov et al., 2002;

Aleksandrov et al., 2005a; Aleksandrov et al., 2005b; Becerra et al., 2007; Bazelyan
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et al., 2008], the approach to the numerical solution is presented here fully with new

modeling of the streamer corona regime and leader initiation. In addition, valida-

tion of the non-stationary model has also been presented. As the non-stationary

corona solution reaches the steady-state regime, it converges to the solution for

stationary, spatially dependent corona, as shown in Figure 4.4.

In regards to non-stationary upward leader initiation, a time-dynamic approach

is demonstrated in this thesis. Similar to the upward leader discussion of Bazelyan

et al. [2008] and Aleksandrov et al. [2005a], the model presented in this thesis sim-

ulates the initiation of streamers and leaders in the context of the time dynamics

of non-stationary corona. The model progression of Figures 4.5 to 4.8 (see also

Appendix A.1.) shows the development of streamer bursts through time. This pro-

gression is consistent with the current pulsing observed experimentally by Moore

et al. [2000a; 2003].

In addition, the non-stationary corona and lightning model can be used to

understand the role of a lightning rod’s radius on the time of leader initiation.

From the results given for a consistently rising voltage in Figure 4.12, it is clear that

large radii have a distinctly higher time of leader initiation, particularly when larger

(more realistic) rise times are explored. This inhibition on leader development gives

larger radii (conservatively estimated for R1 > 5 cm) a distinct disadvantage to

intercepting an approaching downward leader. Therefore, any optimum lightning

rod tip radius should be smaller than 5 cm, and likely in the range of 0–2 cm.

In this thesis, only one case of the functional dependence of applied voltage on

time, U(t), was researched. It is highly plausible that other definitions of U(t)

may reveal a different relationship between rod radii and time of leader initiation.
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5.2 Future Research

It is possible that investigations into the shielding effect could establish a lower

limit for an optimum lightning rod tip radius. The shielding effect occurs when

charge density in the atmosphere (which has been placed there through corona

ignition and streamer formation) shields the lightning rod tip from the effects of

voltage and electric field [Bazelyan et al., 2008]. This layer of charge prevents the

electric field at the tip of the rod from reaching Ec and initiating more corona

and subsequent streamers into the system. In addition, the shielding effect limits

the length of streamers that form in the system because of the voltage drop along

the corona-shield. Many studies list the shielding effect as a reason why corona

prevents leader initiation [Bazelyan et al., 2008; Aleksandrov et al., 2005b; Becerra

et al., 2007; Becerra and Cooray , 2006b].

Artificially, the shielding effect can be seen by inserting a spherical shell, or

“wall”, of ions into the system. By inserting this wall of ions, the voltage drop and

electric field that forms along the wall alleviates the electric field seen at the tip of

the electrode. Therefore, a higher applied voltage is necessary in order for Ec to be

reached. Figure 5.1 shows the electric field and voltage of the simulation domain

at the time of corona initiation for the same parameters as used in Figures 4.5 to

4.8 and in Appendix A.1. The movie of lightning development when a wall of ions

is inserted can be found in Appendix A.2. Though these simulations appear to be

the same, the wall of ions delays the start of corona initiation to 670 µs. Whereas,

without the wall of ions, corona was initiated at 7.5 µs. The overall delay in the

simulation occurs because it takes a longer time for the applied voltage on the rod

tip to reach the necessary voltage for E(R1, t) = Ec. This simulation demonstrates

that a large amount of ions inserted into the system (essentially, the shielding



67

10
−2

10
00

10

20

30

40

50
E

(r
,t)

 (
kV

/c
m

)

r (m)

(a)

10
−2

10
00

500

1000

1500

2000

P
ot

en
tia

l (
kV

)

r (m)

(b)

Figure 5.1. The effect of a wall of ions on the (a) electric field and (b) voltage shown for
a non-stationary lightning simulation at t = 673 µs. Model parameters are: R1 = 5 cm,
R2 = 2.5 m, and τ = 10−4 s.
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Figure 5.2. (a) The critical voltage for corona initiation in free space, as calculated
with Equations (2.5) and (1.1), compared to (b) the proposed voltage for simulating
shielding effects.

effect) prevents corona, streamers, and leaders from forming and, overall, delays

the time of leader initiation.

It is suggested that the delay in leader initiation due to the shielding effect is

dependent on rod radius because, for smaller rod radii, the shielding effect occurs
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more readily and at lower applied voltages. Figure 5.2(a) shows the relationship

between critical voltage (for initiation of corona) and rod radii. A smaller radii

will have a lower Uc for free-space. If a voltage like the one shown in Figure 5.2(b)

were to be applied to the rod, any radii with Uc < Ustop would initiate corona (and

possibly streamers) before tstop. During the time between tstop and tstart, the corona

would continue to develop, forming a corona shield around the rod tip. However,

any radii with Uc > Ustop would not develop any corona until after tstart and will

not see any shielding effect. The relationship between Uc and rod radius indicates

that smaller rod radii will be most affected by the suggested applied voltage shown

in Figure 5.2.

Future research should focus on alternative waveforms for the applied voltage

than the ones discussed in this thesis. By investigating the applied voltage wave-

form, shielding effects on time of leader initiation with respect to rod radii can be

explored, and it is likely that the effect of rod radii on the time of leader initia-

tion can be established. This relationship, in turn, can be used to quantify the

strike-receptiveness of a lightning rod.



Appendix A
Non-Stationary Model Movies

“Supplemental Materials” to this thesis is a CD that contains two movies described

below.

A.1 MovieLightning.avi

In the non-stationary corona and upward leader model (Chapters 3 and 4), data is

best viewed through a movie to show the time dynamics of the system. This movie

was represented at several specific times with Figures 4.5 to 4.8. The parameters

of the model are R1 = 5 cm, R2 = 5 m, and τ = 10−4 s.

This movie can be found in Supplemental Materials: MovieLightning.avi.

A.2 MovieWall.avi

In the context of proposed future research, a simulation of MovieLightning.avi

was performed with a “wall” of charge added into this system as discussed in

Section 5.2. This movie was represented with Figure 5.1. The parameters of the

model are R1 = 5 cm, R2 = 2.5 m, and τ = 10−4 s. The added ion density was
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defined as

nwall(r) =


0 r < 0.5 m; r > 1.5 m,

1.4× 1014 m−3 0.5 m ≤ r ≤ 1.5 m.

(A.1)

This movie can be found in Supplemental Materials: MovieWall.avi
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